HEKA ElProScan ELP 1
ELP 1 system with 45° optics.

Electrochemical Probe Scanner

The HEKA ElProScan is an Electrochemical Probe Scanner for various investigations of electrochemical active surfaces. It belongs to the family of the scanning microscopes like AFM, STM or SECM. The system consists of three main units, a positioning system, a Bipotentiostat/Galvanostat and a data acquisition system. The positioning system moves an ultramicroelectrode in three dimensions over an electrochemically active surface under solution. In this way the ElProScan can be used as a normal SECM but it is much more than that. The chief difference is the application of any electrochemical method (free programmable pulse protocol) at the tip and not only the recording of tip currents. During the protocol, an independent method can be applied to the sample and run simultaneously with the method applied to the tip. ElProScan, therefore can also be used for active electrochemical surface modification.

The HEKA ElProScan system is designed to be used for a wide range of applications such as various kinds of surface analyses, metal deposition, deposition of conductive polymers, imaging of enzyme activity and catalytic centers to name only a few.

The HEKA ElProScan is an integrated system, which allows control of all components by one software program and it consists of scientific grade hardware components to achieve optimal performance. The HEKA ElProScan is the only system which can perform measurements in an extremely wide current range up to 2 A. It also operates as a standard (Bi-)potentiostat/Galvanostat, thus, making it usable for many other electrochemical applications also.

Low current preamplifiers allow high-resolution low-noise recordings in the low pA range. The HEKA ElProScan features a positioning system with a large travel range and a resolution in the nanometer range. No compromises have been made with respect to the mechanical setup components to guarantee high accuracy and reproducibility.

The whole ElProScan system is controlled by our well established POTMASTER software and the embedded ElProScan extension. POTMASTER is a data acquisition program that provides sophisticated tools for waveform generation, data review and editing as well as online analysis.


  • High precision positioning system as combination of DC servo motors and piezo translator
  • Closed loop controlled Piezo for fine height control
  • Time, position and electrochemical parameters are synchronized in an optimal way by real-time speed and position controller.
  • Real-time encoder based position control
  • Large scanning area
  • Fully software controlled Bipotentiostat/Galvanostat for control and recording of potentials and currents from tip and sample
  • Extremely wide current and potential ranges for tip and sample.
  • Matrix Scan with free programmable electrochemical methods
  • Programmable free waveform generator

HEKA‘s ELP 1 systems are divided into four models with different scanning properties. Available models are featured with long scan range (ELP 1), or super-high scan resolution (ELP 1A), or combined long range and high resolution (ELP 1A-MXYZ-PC100) , or specially integrated with a support frame (ELP 1 Arch).

      Model Name

      Positioning System Components

      Dynamic Scan Range*

      Scan Resolutions*

      Scan Mechanism

      ELP 1A

      (High Resolution)

      Z-motor with XYZ-Piezo

      X/Y/Z (100 µm x 100 µm x 100 µm)

      Z-motor (10 nm); XYZ-piezos (1.5 nm default)

      Tip-scanning with Fast-Scan mode

      ELP 1

      (Long Scan Range)

      X/Y/Z-motors with Z-piezo

      X/Y (100mm/75mm) and Z (50mm);


      X/Y/Z-motors (10 nm); Z-piezo (1.5 nm default)

      Collective tip-scanning and sample-scanning

      ELP 1A-MXYZ-PC100 (Long Scan Range with High Resolution)

      X/Y/Z-motors with XYZ-piezo

      X/Y (100mm/75mm) and Z (50mm); XYZ-piezo (100µm each axis)

      X/Y/Z-motors (10 nm); XYZ-piezo (1.5 nm default; also can be customized as 0.38nm)

      Collective tip-scanning and sample-scanning with Fast-Scan mode

      *Note that HEKA Scan systems uses a proprietary algorithm in controlling the mixed Motor and Piezo Stages. Such algorithm allows each Motor’s axis to couple the corresponding Piezo axis in a collective rally-scanning mode, that is to use Piezo’s nanoscale fine resolution in stepping through the available long scan range of each Motor axis.

      • Li, Y., Lang, J., Ye, Z., Wang, M., Yang, Y., Guo, X., Zhuang, J., Zhang, J., Xu, F. and Li, F. (2020) ‘Effect of Substrate Stiffness on Redox State of Single Cardiomyocyte: A Scanning Electrochemical Microscopy Study’, Analytical Chemistry.
      • Chen, S., Prins, S. and Chen, A. (2020) ‘Patterning of BiVO4 Surfaces and Monitoring of Localized Catalytic Activity using Scanning Photoelectrochemical Microscopy’, ACS Applied Materials & Interfaces.
      • Stephens, L. I., Payne, N. A. and Mauzeroll, J. (2020) ‘Super-resolution Scanning Electrochemical Microscopy’, Analytical Chemistry, 92(5), pp. 3958-3963.
      • Payne, N. A., Dawkins, J. I. G., Schougaard, S. B. and Mauzeroll, J. (2019). Effect of Substrate Permeability on Scanning Ion Conductance Microscopy: Uncertainty in Tip-Substrate Separation and Determination of Ionic Conductivity. Analytical Chemistry, 91(24), 15718-15725.
      • Dayeh, M., Ghavidel, M. Z., Mauzeroll, J., & Schougaard, S. B. (2019). Micropipette Contact Method to Investigate High‐Energy Cathode Materials by using an Ionic Liquid. ChemElectroChem, 6(1), 195-201.
      • Chen, X., Zhang, Y., Wu, B. and Sant, G. (2019). A Nitrogen- and Self-Doped Titania Coating Enables the On-Demand Release of Free Radical Species. ACS Omega.
      • Gateman, S. M., Halimi, I., Nascimento, A. R. C., Lacasse, R., Schulz, R., Moreau, C., Chromik, R. & Mauzeroll, J. (2019). Using macro and micro electrochemical methods to understand the corrosion behavior of stainless steel thermal spray coatings. npj Materials Degradation, 3(1), 25.
      • Stephens, L. I., Payne, N. A., Skaanvik, S. A., Polcari, D., Geissler, M., & Mauzeroll, J. (2019). Evaluating the Use of Edge Detection in Extracting Feature Size from Scanning Electrochemical Microscopy Images. Analytical Chemistry 91(6), 3944-3950.
      • B. Sidhureddy, S. Prins, J. Wen, A. R. Thiruppathi, M. Govindhan, A. Chen (2019). “Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction.” ACS Applied Materials & Interfaces 11(20):18295-18304.
      • T. Nickchi, P. Rostron, I. Barsoum, A. Alfantazi (2019). “Measurement of local galvanic surface corrosion using scanning electrochemical microscopy on ductile cast iron.” Journal of Materials Science 54(12): 9213-9221.
      • V. Venkatesh, C. Heinemann, V.B. Sundaresan (2019). “Surface-tracked scanning ion conductance microscopy: A novel imaging technique for measuring topography-correlated transmembrane ion transport through porous substrates.” Micron 120:57-65.
        • J. Zhu, J. Hiltz, U.M. Tefashe, J. Mauzeroll, R.B. Lennox (2018). “Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels–Alder Reaction.” Chemistry–A European Journal 24(35):8904-8909.
        • V. Venkatesh, R. Northcutt, C. Heinemann, V.B. Sundaresan (2018). “A structural model of ultra-microelectrodes for shear-force based scanning electrochemical microscopy.”  Journal of Intelligent Material Systems and Structures 29(18), 3562-3571.
        • S.M. Gateman, L. I. Stephens, S. C. Perry, R. Lacasse, R. Schulz, J. Mauzeroll (2018). “The role of titanium in the initiation of localized corrosion of stainless steel.” Nature Materials Degradation 444(2):1-8.
        • T. Noyhouzer, S. C. Perry, A. Vicente-Luis, P. L. Hayes, J. Mauzeroll (2018).“The Best of Both Worlds: Combining Ultramicroelectrode and Flow Cell Technologies.” Journal of the Electrochemical Society 165(2):H10-15.
        • Giron, R. G. P., Chen, X., La Plante, E. C., Gussev, M. N., Leonard, K. J., & Sant, G. (2018). Revealing How Alkali Cations Affect the Surface Reactivity of Stainless Steel in Alkaline Aqueous Environments. ACS Omega, 3(11), 14680-14688.
        • M. Bozem, P. Knapp, V. Mirceski, E.J. Slowik, I. Bogeski, R. Kappl, C. Heinemann, M. Hoth (2018). “Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.”  Antioxidants & Redox Signaling. Show Me.
        • A. Kandory, H. Cattey, L. Saviot, T. Gharbi, J. Vigneron, M. Frégnaux, A. Etcheberry, G. Herlem (2017). “Direct Writing on Copper Ion Doped Silica Films by Electrogeneration of Metallic Microstructures.” J Phys Chem C. 121(2):1129-1139.
        • L.I. Stephens, S.L. Perry, S.M. Gateman, R. Lacasse, R. Schulz, J. Mauzeroll (2017). “Development of a Model for Experimental Data Treatment of Diffusion and Activation Limited Polarization Curves for Magnesium and Steel Alloys.” J Electrochem Soc. 164(11):E3576-E3582.
        • D. Polcari, J.A. Hernandez-Castro, K. Li, M. Geissler, J. Mauzeroll (2017). “Determination of the Relationship between Expression and Functional Activity of Multidrug Resistance-Associated Protein 1 using Scanning Electrochemical Microscopy.” Anal. Chem. 89(17):8988-8994.
        • D. Polcari, S.C. Perry, L. Pollegioni, M. Geissler, J. Mauzeroll (2017). “Localized Detection of d-Serine by using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy.”  ChemElectroChem 4(4):920-926.
        • N.A. Payne, L.I. Stephens, J. Mauzeroll (2017). “The Application of Scanning Electrochemical Microscopy to Corrosion Research.” Corrosion 73(7):759-780.
        • L. Danis, S.M. Gateman, C. Kuss, S.B. Schougaard, J. Mauzeroll (2016). “Nanoscale Measurements of Lithium-Ion-Battery Materials using Scanning Probe Techniques.” ChemElectroChem 4(1):6-19.
        • D. Polcari, P. Dauphin-Ducharme, J. Mauzeroll (2016). “Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015.” Chemical Reviews 116(22):13234-13278.
        • M.E. Snowden, M. Dayeh, N.A. Payne, S. Gervais, J. Mauzeroll, S. Schougaard (2016). “Measurement on isolated lithium iron phosphate particles reveals heterogeneity in material properties distribution.” Journal of Power Sources, 325:682-689.
        • C. Kuss, N.A. Payne, J. Mauzeroll (2016). “Probing passivating porous films by scanning electrochemical microscopy.” Journal of the Electrochemical Society 163(4):H3066-H3071.
        • V. Venugopal, V. Venkatesh, R.G. Northcutt, J. Maddox, V.B. Sundaresan (2016). “Nanoscale polypyrrole sensors for near-field electrochemical measurements. Sensors and Actuators B: Chemical, 242:1193-1200.
        • T. Hery, V.B. Sundaresan (2016). “Ionic redox transistor from pore-spanning PPy (DBS) membranes.” Energy & Environmental Science 9 (8):2555-2562.
        • R. G. Northcutt, V. B. Sundaresan, C. Heinemann (2016). “Dynamic Mechanoelectrochemistry of Polypyrrole Membranes via Shear-Force Tracking.”  Physical Chemistry Chemical Physics 18(26):17366-17372. Supplemental Information of this article
        • Kandory, A., Yahiaoui, R., Herth, E., Cattey, H., Gharbi, T., & Herlem, G. (2016). Electrogeneration of Diiodoaurate in Dimethylsulfoxide on Gold Substrate and Localized Patterning. Int. J. Electrochem. Sci, 11, 7540-7552.
        • U.M. Tefashe, P. Dauphin-Ducharme, M. Danaie, Z.P. Cano, J.R. Kish, G. A. Botton, J. Mauzeroll (2015). “Localized Corrosion Behavior of AZ31B Magnesium Alloy with an Electrodeposited Poly(3,4-Ethylenedioxythiophene) Coating.” Journal of The Electrochemical Society 162(10):C536-C544.
        • P. Dauphin-Ducharme, C. Kuss, D. Rossouw, N.A. Payne, L. Danis, G. A. Botton, J. Mauzeroll (2015). “Corrosion Product Formation Monitored Using the Feedback Mode of Scanning Electrochemical Microscopy with Carbon Microelectrodes.” Journal of The Electrochemical Society 162(12):C677-C683.
        • R. G. Northcutt & V.B. Sundaresan (2015). “Mechanoelectrochemistry of PPy(DBS) from correlated characterization of electrochemical response and extensional strain.” Physical Chemistry Chemical Physics 17(48):32268-32275. Supplemental Information of this article
        • S. Kuss, D. Trinh, L. Danis, J. Mauzeroll (2015). “High-Speed Scanning Electrochemical Microscopy Method for Substrate Kinetic Determination: Method and Theory.” Analytical Chemistry 87(16):8096-8101.
        • S. Kuss, D. Trinh, J. Mauzeroll (2015). “High-Speed Scanning Electrochemical Microscopy Method for Substrate Kinetic Determination: Application to Live Cell Imaging in Human Cancer.” Analytical Chemistry 87(16):8102-8106.
        • P. Dauphin-Ducharme, J. Mauzeroll (2015). “Surface Analytical Methods Applied to Magnesium Corrosion.” Analytical Chemistry 87(15):7499-7509.
        • L. Danis, D. Polcari, A. Kwan, S.M. Gateman, J. Mauzeroll (2015). “Fabrication of Carbon, Gold, Platinum, Silver and Mercury Ultramicroelectrodes with Controlled Geometry.” Analytical Chemistry 87(5):2565-2569.
        • P. Dauphin-Ducharme, J. W. Binns, M. E. Snowden, D. W. Shoesmith, J. Mauzeroll (2015). “Determination of the local corrosion rate of magnesium alloys using a shear force mounted scanning microcapillary method.” Faraday Discussions 180:331-345.
        • R. M. Asmussen, J. Binns, P. Jakupi, P. Dauphin-Ducharme, U. M. Tefashe, J. Mauzeroll, D. W. Shoesmith (2015). “Reducing the corrosion rate of magnesium alloys using ethylene glycol for advanced electrochemical imaging.” Corrosion Science 93:70-79.
        • P. Dauphin-Ducharme, R. M. Asmussen, D. W. Shoesmith, J. Mauzeroll (2015). “In-situ Mg2+ release monitored during magnesium alloy corrosion.” Journal of Electroanalytical Chemistry 736:61-68.
        • Dauphin-Ducharme, P., Kuss, C., Rossouw, D., Payne, N. A., Danis, L., Botton, G. A., & Mauzeroll, J. (2015). Corrosion Product Formation Monitored Using the Feedback Mode of Scanning Electrochemical Microscopy with Carbon Microelectrodes. Journal of the Electrochemical Society, 162(12), C677-C683.
        • A. Sridhar, H.L. de Boer, A. van den Berg, S. Le Gac (2014). ” Microstamped Petri Dishes for Scanning Electrochemical Microscopy Analysis of Arrays of Microtissues.” PLoS ONE 9(4):e93618. Show Me.
        • L. Danis, S. M. Gateman, M. E. Snowden, I. C. Halalay, J. Y. Howe, J. Mauzeroll (2014). “Anodic Stripping Voltammetry at Nanoelectrodes: Trapping of Mn2+ by Crown Ethers.” Electrochimica Acta 162:169-175.
        • P. Dauphin-Ducharme, R. M. Asmussen, U. M. Tefashe, M. Danaie, W. J. Binns, P. Jakupi, G. A. Botton, D. W. Shoesmith, J. Mauzeroll (2014). “Local Hydrogen Fluxes Correlated to Microstructural Features of a Corroding Sand Cast AM50 Magnesium Alloy.” Journal of the Electrochemical Society 16(12):C557-C564.
        • L. Danis, M. E. Snowden, U. M. Tefashe, C. N. Heinemann, J. Mauzeroll (2014). “Development of Nano-Disc electrodes for Application as Shear Force Sensitive Electrochemical Probes.” Electrochimica Acta 136:121-129.
        • U. M. Tefashe, M. E. Snowden, P. D. Ducharme, M. Danaie, G. A. Botton, J. Mauzeroll (2014). “Local flux of hydrogen from magnesium alloy corrosion investigated by scanning electrochemical microscopy.” Journal of Electroanalytical Chemistry 720-721:121-127.
        2013 and earlier
        • S. Kuss, D. Polcari, M. Geissler, D. Brassard, J. Mauzeroll (2013). “Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy.” Proceedings of the National Academy of Sciences 110(23):9249-9254.
        • R. Cornut, S. Poirier, J. Mauzeroll (2012). “Forced convection during feedback approach curve measurements in scanning electrochemical microscopy: Maximal displacement velocity with a microdisk.” Analytical Chemistry 84(8):3531-3537.
        • Beaulieu, S. Kuss, J. Mauzeroll, M. Geissler (2011). “Biological scanning electrochemical microscopy and its application to live cell studies.” Analytical Chemistry 83(5):1485-1492.
        • M. A. Mezour, M. Morin, J. Mauzeroll (2011). “Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry.” Analytical Chemistry 83(6):2378-2382.
        • S. Kuss, R. Cornut, I. Beaulieu, M. A. Mezour, B. Annabi, J. Mauzeroll (2011). “Assessing multidrug resistance protein 1-mediated function in cancer cell multidrug resistance by scanning electrochemical microscopy and flow cytometry. Bioelectrochemistry 82 (1):29-37.
        • M. A. Mezour, R. Cornut, E. M. Hussien, M. Morin, J. Mauzeroll (2010). “Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol-porphyrin monolayers on gold using SECM and nanoelectrodes.” Langmuir 26(15):13000-13006.
        • R. Cornut, M. Mayoral, D. Fabre, J. Mauzeroll (2010). “Scanning electrochemical microscopy approach curves for ring microelectrodes in pure negative and positive feedback mode.” Journal of the Electrochemical Society 157(7):F77-F82.
        • C. Cougnon, F. Gohier, D. Belanger, J. Mauzeroll (2009). “In situ formation of diazonium salts from nitro precursors for scanning electrochemical microscopy patterning of surfaces.” Angewandte Chemie International Edition 48(22):4006-4008.
        • C. Cougnon, J. Mauzeroll, D. Blanger (2009). “Patterning of surfaces by oxidation of amine-containing compounds using scanning electrochemical microscopy.” Angewandte Chemie International Edition 48(40):7395-7397.
        • C. Cougnon, K. Bauer-Espindola, D.S. Fabre, J. Mauzeroll (2009). “Development of a Phase-Controlled Constant-Distance Scanning Electrochemical Microscope.” Analytical Chemistry 81(9):3654-3659.
        • E. Fortin, J. Chane-Tune, D. Delabouglise, P. Bouvier, T. Livache, P. Mailley, B. Marcus, M. Mermoux, J.-P. Petit, S. Szunerits, E. Vieil (2005). “Interfacing Boron Doped Diamond and Biology: An Insight on Its Use for Bioanalytical Applications.” Electroanalysis 17:517-526.
        • M. F. Garay, J. Ufheil, K. Borgwarth, J. Heinze (2004). “Retroperspective chemical analysis of tree rings by means of the scanning electrochemical microscopy with shear force feedback.” Physical Chemistry Chemical Physics 6(15):4028-4033.
        • Elodie Fortin, Jrme Chane-Tune, Pascal Mailley, Sabine Szunerits, Bernadette Marcus, Jean-Pierre Petit, Michel Mermoux and Eric Vieil (2004). “Nucleosides and ODN electrochemical detection onto boron doped diamond electrodes.” Bioelectrochemistry 63(1-2):303-306.

        Tab Content