fitmaster

Data Review, Analysis and Fitting

FITMASTER features analysis and fitting routines for electrophysiological data. Analysis can be performed on the levels of Sweeps/Traces and Series. Besides standard fit functions such as Polynomials, Exponentials, Gaussians, and Boltzmanns, tailored functions to fit e.g. whole-cell current traces according to Hodgkin&Huxley gating formalism, current-voltage relationships and dose-response curves allow publication-proof analysis of your data.

The experienced patch clamp investigator will be fascinated by the versatility of the program and logical structure of the functions. All of the features of PATCHMASTER’s / POTMASTER’s Online Analysis are also present in FITMASTER. In principle, FITMASTER extends these capabilities by adding more specific analysis features and the generation of an analysis tree. The way FITMASTER works is tightly linked to the tree structure of data up to the level of a Series. Hence, FITMASTER has equivalent hierarchical levels of analysis corresponding to the tree levels featured in the Replay data tree. The analysis is organized in a structured way, relating to Sweeps and Series. The lowest level is the analysis of a raw data trace, a Trace. The TraceFit dialog provides tools for selecting a section of the trace for analysis and specifications of the type of analysis to be performed. The values determined by this sweep analysis can be further processed in SeriesFit. But in contrast to PULSEFIT, FITMASTER allows pooling of data on the level of the Series by introducing the new waves buffer concept. Several results of the TraceFit can be compiled in the waves buffer and then displayed in the SeriesFit graph. Several fit functions can be used to describe this ensemble of data points.

Features:

  • Current-voltage curve analysis
  • Inhibition and activation analysis
  • Dose-response curve fitting
  • Analysis of evoked and spontaneous currents and potentials
  • Action potential analysis
  • Single channel analysis
  • Amplitude histograms
  • Power spectra analysis
  • Fit to raw data traces and analysis results
  • Fitting to user defined functions
  • Runs on Windows 7, 8, 10 and on Mac OS X > 10.6 (requires a free USB port for the dongle)

All software updates for our FITMASTER software are free of charge.

Order Number: 895046

FITMASTER Dongle Exchange

Order Number: 895107

2017
  • S. Vullo, G. Bonifacio, S. Roy, N. Johner, S. Bernèche and S. Kellenberger (2017). “Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating.” Proceedings of the National Academy of Sciences 114(14): 3768-3773.
2016
  • M. J. D. Daniels, J. Rivers-Auty, T. Schilling, N. G. Spencer, W. Watremez, V. Fasolino, S. J. Booth, C. S. White, A. G. Baldwin, S. Freeman, R. Wong, C. Latta, S. Yu, J. Jackson, N. Fischer, V. Koziel, T. Pillot, J. Bagnall, S. M. Allan, P. Paszek, J. Galea, M. K. Harte, C. Eder, C. B. Lawrence and D. Brough (2016). “Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models.” Nature Communications 7: 12504.
  • E. T. Dustrude, A. Moutal, X. Yang, Y. Wang, M. Khanna and R. Khanna (2016). “Hierarchical CRMP2 posttranslational modifications control NaV1.7 function.” Proceedings of the National Academy of Sciences 113(52): E8443-E8452.
  • Y. Zhou, X. Cai, N. A. Loktionova, X. Wang, R. M. Nwokonko, X. Wang, Y. Wang, B. S. Rothberg, M. Trebak and D. L. Gill (2016). “The STIM1-binding site nexus remotely controls Orai1 channel gating.” Nature Communications 7: 13725.

2015
  • L. Ebbers, S. V. Satheesh, K. Janz, L. Rüttiger, M. Blosa, F. Hofmann, M. Morawski, D. Griesemer, M. Knipper, E. Friauf and H. G. Nothwang (2015). “L-type Calcium Channel Cav1.2 Is Required for Maintenance of Auditory Brainstem Nuclei.” Journal of Biological Chemistry 290(39): 23692-23710.
  • C. Holzmann, T. Kilch, S. Kappel, K. Dörr, V. Jung, M. Stöckle, I. Bogeski and C. Peinelt (2015). “Differential Redox Regulation of Ca2+ Signaling and Viability in Normal and Malignant Prostate Cells.” Biophysical Journal 109(7): 1410-1419.
  • E. Leipold, A. Hanson-Kahn, M. Frick, P. Gong, J. A. Bernstein, M. Voigt, I. Katona, R. O. Goral, J. Altmüller, P. Nürnberg, J. Weis, C. A. Hübner, S. H. Heinemann, I. Kurth (2015). “Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant.” Nature Communications 6: 10049.
  • A. Quintana, V. Rajanikanth, S. Farber-Katz, A. Gudlur, C. Zhang, J. Jing, Y. Zhou, A. Rao and P. G. Hogan (2015). “TMEM110 regulates the maintenance and remodeling of mammalian ER-plasma membrane junctions competent for STIM-ORAI signaling.” Proceedings of the National Academy of Sciences 112(51): E7083-E7092.
  • J.-P. Rosso, J. R. Schwarz, M. Diaz-Bustamante, B. Céard, J. M. Gutiérrez, M. Kneussel, O. Pongs, F. Bosmans and P. E. Bougis (2015). “MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity.” Proceedings of the National Academy of Sciences 112(8): E891-E900.
  • T. Stadler, A. O. O’Reilly and A. Lampert (2015). “Erythromelalgia Mutation Q875E Stabilizes the Activated State of Sodium Channel Nav1.7.” Journal of Biological Chemistry 290(10): 6316-6325.
  • G. Stölting, S. Bungert-Plümke, A. Franzen and C. Fahlke (2015). “Carboxyl-terminal Truncations of ClC-Kb Abolish Channel Activation by Barttin Via Modified Common Gating and Trafficking.” Journal of Biological Chemistry 290(51): 30406-30416.

2014
  • G. Born, D. Breuer, S. Wang, A. Rohlmann, P. Coulon, P. Vakili, C. Reissner, F. Kiefer, M. Heine, H.-C. Pape and M. Missler (2014). “Modulation of synaptic function through the α-neurexin-specific ligand neurexophilin-1.” Proceedings of the National Academy of Sciences 111(13): E1274-E1283.
  • L. E. Browne, J. P. M. Nunes, J. A. Sim, V. Chudasama, L. Bragg, S. Caddick and R. Alan North (2014). “Optical control of trimeric P2X receptors and acid-sensing ion channels.” Proceedings of the National Academy of Sciences 111(1): 521-526.
  • S. Farajnia, T. L. E. van Westering, J. H. Meijer and S. Michel (2014). “Seasonal induction of GABAergic excitation in the central mammalian clock.” Proceedings of the National Academy of Sciences 111(26): 9627-9632.