ElProScan SPECM System

The World’s Best
Scanning Photoelectrochemical Microscope

- Unique Matrix Scan with Microelectrode and Light Beam Remaining Confocal
- Electrochemical Signals Synchronized with Spatially Resolved Photo-Excitation
- Multi-Dimensional Data Obtained on the True Micron or Nano-Scale

www.heka.com
ElProScan - Scanning Photoelectrochemical Microscope System

- ElProScan is the World’s 1st commercial SPECM system from HEKA for microscopic study and imaging of photoelectrochemical processes on micron and sub-micron scale.

- The innovative SPECM works for a wide range of materials and applications:
 - Inorganic Semiconductors
 - Semiconducting Polymers
 - Solar to Electricity Conversion (solar cells)
 - Solar to Chemical Energy Conversion (Water splitting and CO₂ reduction)
 - Hybrid Nanostructures
 - Organic Photovoltaic Materials
 - Photosterilisation, Self-Cleaning Surfaces
 - Environmental (air and water) Remediation

- Unique system design features a Synchronized Photo-Excitation System seamlessly integrated with a Scanning Electrochemical Microscope (SECM) system.

A general scheme for the SPECM design

Legend:
1: Objective Lens
2: Beam-Splitter
3: 90° Mirror
4/5/8: Special Optical Lenses
6: C-mount Adapter
7: Variable Field Stop
9: Light Guide Adapter

Illustrative cartoon shows a transparent substrate

Advanced SECM System from above the sample (XYZ)

Synchronized Photo Excitation System on the inverted bottom (F)

- The Modular Optical Train is compatible with most excitation light sources (LED / Laser/ Xeon arc lamp).
- The incident light beam spot size may be adjusted by users, ranging from ca. 1µm – 900µm.
- The vertically mounted scanning probe remains confocal with light beam during scanning; one scan of XY-stage yields multi-channel optical, physical and electrochemical data (3D/4D/5D...) simultaneously.
PG618USB – The Perfect Bipotentiostat for Photoelectrochemical Imaging

Each HEKA SPECM system includes the best-in-class Bipotentiostat (PG618USB) for studying nanoscale electrochemical signals.

Features

- The Ultra Bipotentiostat PG618USB is designed and optimized to support cutting-edge scanning probe experiments. The **amplifier-1 channel** supports larger current ranges that’re suitable for connecting with a bulk sample electrode. The **amplifier-2** features a low noise ultra-sensitive preamplifier channel for controlling or sensing voltage and/or current of the micro-probe working electrode.

- Best-in-class current resolution of 0.15 fA in the lowest 5pA range (with current noise < 3.5 fA at 15 Hz bandwidth in 5 pA range)

- Built-in 16 bit, 200 kHz AD/DA interface with 5 µs shortest sample interval

- Additional low-current preamplifier channels can be scaled up to support triple or quadruple Working Electrodes

- Additional Auxiliary I/O ports empower the control of external equipment (such as light source, filter wheels, cameras, etc.)

- Can be used as a standalone Workstation for a wide range of traditional electroanalytical applications, including electrochemical sensing of single nanoparticles & single molecules

- Optional upgrade with high current boosters up to ±50 A range
Spatially-Resolved Photocurrent Mapping with Transparent Substrate

✓ Precise Alignment of Microelectrode Probe with Inverted Adjustable Light Beam Spot

Top 45° camera view of probe, sample and light spot

Inverted camera view with light beam on sample

Inverted camera view focusing on a Pt UME (small light spot)

Inverted camera view focusing on both UME and substrate (large light spot)

Inverted camera view focusing on optical fiber end (2 um dia.)

✓ Spatially-resolved Photocurrent Mapping from Inverted Light Illumination (individual wavelength)

Local Photocurrent of TiO₂ thin film using Full Spectrum light irradiation (90 µm dia. light spot size)

3D micrograph of Photocurrent distribution

✓ Microscopic Fast-Mapping of Photocurrent for Multiple Wavelengths within one scan

Automatic multi-wavelengths switching synchronized with ultra-fast Photocurrent recordings from BiVO₄ thin film.
Simultaneous mapping of microscopic distribution of photocurrent, IPCE/QE, photo-sensitive products or intermediates, and high-resolution surface topography within one scan.

Automatic multi-wavelengths switching synchronized with dual-channel current recordings

Innovative SPECM Imaging via Scanning Electrochemical Cell Microscopy (Microdroplet Cell Mode)

Micro-droplet of electrolyte hanging at a micropipette tip
Working with Non-transparent Substrate via Opto-Pipette

- 2018 new system supports optical fiber couplings with Opto-micropipette techniques via SICM or SECCM configurations.

- Opto-pipette used in Scanning Ion Conductance Microscopy mode

- Opto-pipette used in Scanning Electrochemical Cell Microscopy mode

- Top camera view of Opto-micropipette tip and mirror image from a wafer sample

- Localized top-illumination mode via a quartz glass microprobe is compatible with Shear-force Topography-Sensing technique

- Localized photocurrent measurements from multi-wavelength illuminations, obtained from Synchronized Optopipette-SECCM experiments.

Benefit & Novelty

- Local Photocurrent (≈fA resolution) and Topography (≈nm resolution) can be mapped simultaneously within one scan
- Improved light-beam spatial resolution vs. bulk mode (e.g. 1~2 µm vs 90 µm dia. spot)
- Much improved s/n ratio and ultra-low noise in Photocurrent (e.g. pA vs. nA)
- Only a small local spot is in contact with electrolyte at a time
- Multiple wavelengths of light can be automatically switched and measured in one user-defined Matrix Scan
The Most Featured and Versatile Accessories for SPECM

- **Microelectrodes (Pt / Au / Carbon)**
 200 nm – 25 µm dia.

- **Microelectrode Polishing Machine**

- **Electrochemical Cell Stage Insert with Temperature Control and Gas Purging**

- **Various Light Sources & Filters**

- **Holders for Microelectrodes, Micropipettes and SMA-Fibers**

- **Vibration-isolation & Shielding Device**
ElProScan SPECM System Configurations and Specifications

<table>
<thead>
<tr>
<th>Components and Items</th>
<th>Technical Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning System with Integrated Microscope Optics</td>
<td></td>
</tr>
<tr>
<td>X/Y/Z/F 4D positioning system</td>
<td>4-Axis DC servo motors with Z-axis piezoelectric system (X/Y-axis carries sample in scanning; Z-axis carries microprobe, and F-axis drives objective lenses for precise focus).</td>
</tr>
<tr>
<td>Resolution of X/Y/Z Axis</td>
<td>Linear Encoder of each motor axis = 2.5 nm resolution (all closed-loop controlled); 1.5 nm resolution for the Z-axis piezo module; XY-scan resolution = 10 nm with 4 times oversampling algorithm to ensure accuracy</td>
</tr>
<tr>
<td>X/Y/Z/F Axis Travel Range</td>
<td>Automatic motor-scan range: X = 100 mm, Y = 75 mm, Z and F = 50 mm. Z-axis piezo range = 100 μm (closed-loop controlled) A manual translator unit extends XY range to additional 12 mm.</td>
</tr>
<tr>
<td>4D External Joystick</td>
<td>For X/Y/Z/F manual control with sub-micron accuracy; may operate in precise-slow motion and coarse-fast motion.</td>
</tr>
<tr>
<td>Integrated Microscope Optics</td>
<td>The inverted optical train contains a motorized focus drive, epi-fluorescence optics in Kohler configuration (with a variable field stop) and special coupling to a liquid light guide, camera port with C-mount, an optional Filter cube holder, and slide-in beam splitter and a mirror cube. Additional fixed-spot size illumination path with coupling to a FC/PC fiber is included. Optional objectives (4x up to 100x) can be mounted in a 6-position turret nose piece. Microscope optics transmits light of wavelength above 330 nm.</td>
</tr>
<tr>
<td>Optional Upgrade</td>
<td>Top 45° camera system may record and view the microprobe and sample surface in prepositioning, greatly facilitating Z/F-axes alignment and pre-scan preparations.</td>
</tr>
<tr>
<td>Bipotentiostat WorkStation</td>
<td></td>
</tr>
<tr>
<td>Voltage Range / Resolution</td>
<td>± 10V (in single amplifier mode) / 610 nV</td>
</tr>
<tr>
<td>Current Ranges</td>
<td>±20 nA to ±100 mA (Amp-1); ±5 pA to ±2 μA (Amp-2; total 18 ranges available)</td>
</tr>
<tr>
<td>Max. Current Resolution</td>
<td>0.15 fA in 5pA range (Amp-2) ; 0.61 pA in 20nA range (Amp-1)</td>
</tr>
<tr>
<td>Noise in Current</td>
<td>RMS value < 3.5 fA (at 15 Hz bandwidth in 5 pA range of Amp-2)</td>
</tr>
<tr>
<td>DAC Interface</td>
<td>16-bit / 5 μs fastest pulse / 200 kHz sampling rate</td>
</tr>
<tr>
<td>Optional Upgrade</td>
<td>(1) Current Booster for extending max. current range to ±50 A (2) External EIS measurement module (10 μHz – 1 MHz) (3) Scanning Kelvin Probe system available as an add-on module</td>
</tr>
<tr>
<td>Photo-Excitation System</td>
<td></td>
</tr>
<tr>
<td>Synchronized Multi-Wavelength Excitation System</td>
<td>Standard package includes: 300W Xenon arc lamp, shuttered 10-position filter wheel, fused silica light guide, 10 bandpass filters with 10nm bandwidth in the range of 350nm to 800nm, 1 neutral density filter).</td>
</tr>
<tr>
<td>Light Guide to Fiber Coupler Kit</td>
<td>Used for connecting a light guide with 5mm OD and 20mm length fitting to a SMA type optical fiber for the fixed spot-size illumination path.</td>
</tr>
<tr>
<td>Opto-Pipette Holder Kit</td>
<td>A special pipette holder with a straight optical port (SMA type) used for coupling a HEKA Cannula to an optical fiber for combined top-illumination in SICM/SECCM experiments.</td>
</tr>
<tr>
<td>Optional Upgrade</td>
<td>Special customization is available for adding Synchronized Fluorescence Imaging module.</td>
</tr>
</tbody>
</table>
ElProScan SPECM Supported Techniques and Applications*

<table>
<thead>
<tr>
<th>Supported Techniques</th>
<th>Key Features</th>
<th>Main Application Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECM for localized 2D/3D imaging and spectroscopic measurements</td>
<td>Supports all existing SECM operation modes (Feedback; Generation-Collection; Redox-Competition, AC-SECM, etc.)</td>
<td>Mapping surface electrochemical activities of various samples and systems (e.g. biological sensors, live cells, molecular transport at porous membranes, electro- & photo-catalysts, local corrosion processes, liquid/liquid charge transfer, micro-fabrication & micro-patterning of surface)</td>
</tr>
<tr>
<td>Simultaneous Surface Topography Mapping</td>
<td>Shear-force based Constant Distance scan in synchronization within SECM or AC-SECM scans (via advanced non-contact hopping mode)</td>
<td>(i) In situ imaging of sample's height profiles and topography. (ii) Real-time surface-tracking of height/volume for thin-films.</td>
</tr>
</tbody>
</table>
| Scanning Photoelectrochemical Microscopy (SPECM) | (a) Precise synchronization of SECM with multi-wavelength photo-illumination at variable controlled spot-sizes.
(b) Multi-dimensional data recordings via automated Protocol-controlled Matrix Scan.
(c) Flexible optical designs are suited for both transparent and non-transparent samples.
(d) Spatially-resolved optical and electrochemical probe coupling reaches sub-micron resolution.
(e) Versatile optical configurations support the addition of a UV-VIS-IR spectrometer via optical fiber coupling. | (i) Simultaneous microscopic imaging of localized photocurrents, IPCE/QE distribution, and photoactive intermediates or products within a single 2D/3D SECM scan. (ii) High throughput screening of Photocatalysts via synchronized multi-wavelength excitations and multi-channel data recordings.
(iii) Localized studies of photoelectrochemistry (e.g. Localized Photocurrent Spectroscopy; kinetics study of electron-hole recombination; Spectral Resolved Transmittance / Absorbance Spectroscopy* vs. Voltage, Current, or Time)
* requires fiber-coupled spectrometers |
| Scanning Ion Conductance Microscopy (SICM) | (a) Three modern operation modes of SICM are supported: AC- and DC- hopping mode, and Bias-Modulated SICM.
(b) Unique probe design allows the use of Opto-pipette to combine photo-excitations with SICM. | (i) Non-destructive high-resolution topography imaging is widely suited for all delicate and soft sample surfaces in electrolyte. (ii) Simultaneous in situ mapping of surface charge and topography via Bias-Modulated SICM.
(iii) *Simultaneous microscopic mapping of topography and photocurrents/IPCE/QE for photoactive materials.
* Requires Opto-pipette kit and light illumination controls. |
| Scanning Electrochemical Cell Microscopy (SECCM) and Scanning Microcapillary Contact Method (SMCM) | (a) Users may control the probe size and the spatial resolution of the scanned area (i.e. nano-/micro-pipette tip can be prepared by users).
(b) User-defined protocol script may automate a highly complex Matrix Scan with multi-dimensional data recorded.
(c) SECCM and SMCM set-up is fully compatible with photo-illumination from top and inverted optics, thus extending the schemes of experimenting in SPECM.
(d) Unique Opto-pipette holder supports the use of various combinations of bi-functional probes: such as SECM-SICM probes; Optical illumination-SICM probes; Optical illumination-SECM probes, etc. | (i) Spatially-resolved local electrochemical analysis of photo-catalysts, electro-catalysts and conductive polymers. (ii) Simultaneous mapping of depth profiles and localized corrosion potentials.
(iii) Nanoscale mapping of redox activity of Li-ion battery cathodes materials.
(iv) Combined SPECM imaging* with simultaneous topography mapping
* Requires Opto-pipette kit and light illumination controls. |

* Please also refer to HEKA’s Full ElProScan Brochure for more technical details.
Engineered in Germany
Supported at Your Doorstep

Please contact HEKA for ElProScan SPECM at:

Sales@HEKA.com
Support@HEKA.com

General Notes:
Product names, models and pictures used herein are for identification purposes only and may be trademarks of their respective owners. The copyright of the professional terminology name involved is owned by the original author and related commercial entities. HEKA disclaims any and all rights in those marks. The technical parameters and specifications of HEKA products are subject to the final sales agreement or contract. HEKA reserves the right to change the product parameters caused by the progress of technology and product development. Any product manufactured and sold by HEKA shall not be used for human-related lab research or clinical treatment purposes; HEKA reserves the right to be exempt from liability for personal injury and financial loss caused by the incorrect operation of any HEKA equipment.